3、骨骼的生长发育特性。
幼鸽期是骨骼生长和发育的关键时期。幼鸽骨骼最主要的特性是骨的化学成分与成年鸽不同,骨骼中含有机物较多,含无机物较少,因此幼鸽骨骼易变形。
幼鸽期是骨细胞增殖最快的时期,出壳四十天左右,骨骼的生长可达到成年鸽的水平。但是骨密度的发育水平远不及成年鸽。因此,幼鸽骨骼正常的生长和骨密度的增加,是生长和发育正常的重要标志。
幼鸽期骨骼的生长和骨密度的增加,直接关系到赛鸽竞翔运动潜力激发的水平。因为赛鸽在竞翔返巢运动中,脑和神经系统的兴奋活动和肌肉收缩运动需要大量的钙元素,而钙的来源主要依靠骨骼中钙储备的溶出。一般来说,赛鸽竞翔前的骨骼表现出粗硬的特点,而经过一次长时间的飞行运动返巢后,原来竞翔前粗硬的龙骨会变得细软。这说明赛鸽在长时间的肌肉活动中,体内储备的钙元素被大量消耗。
幼鸽期骨骼正常的生长和发育为钙元素的储备打下良好的物质基础,只有使赛鸽骨骼中钙的储备达到与竞翔运动相适应的水平,才能为赛鸽激发运动潜力的神经活动和肌肉运动提供充足的钙元素。如果赛鸽在骨骼生长发育阶段错过了骨细胞增殖和增加的时期,必将导致骨骼生长不良和骨质密度的疏松。即使在赛鸽成年之后去补充足量的钙元素,其结果仍然无法与正常生长发育的效果相比拟。我们采用了实验组与对照组相比较的实验,充分证明了幼鸽骨骼生长发育的水平直接影响赛鸽竞翔运动潜力发挥的水平。
赛鸽骨骼生长发育对竞翔运动潜力发挥的影响,具体有如下特点。一般来说,骨骼生长发育水平较高的赛鸽,经过放飞训练或竞翔运动之后,被消耗的骨钙经过钙营养的补充,能较好地恢复,它们在下一阶段或者更远距离的竞翔运动中,骨钙的恢复水平能够适应竞翔运动潜力激发特点的需要。而骨骼生长发育不良的赛鸽,在最初的放飞训练或短距离的竞翔活动中,骨骼中储备的钙元素尚能满足神经活动和肌肉运动的需要。但是,由于骨骼钙储备的水平较低,经过放飞训练或短距离竞翔之后,随着骨钙的消耗,龙骨变得细软,给骨钙的恢复带来极大的影响。因此它们再去竞翔更远的距离时,受到骨骼生长发育不良的影响,骨钙的储备无法满足竞翔运动对“潜能”激发特点的需要,继而造成脑和神经系统,肌肉收缩运动时钙营养来源不足。这是导致赛鸽运动能力低下或者竞翔不归的重要原因之一。
4、呼吸系统生长发育特性。
赛鸽在竞翔运动过程中,保持长时间飞行运动所需要的能量,是体内各种物质氧化时所释放的结果。进行氧化作用所需要的氧气须从外界获得,所产生的二氧化碳又必须及时排出体外,以保证运动时能量代谢的正常进行。这种鸽体与外界环境时间的气体交换过程,即称为呼吸。呼吸是由呼吸系统完成的,赛鸽进行呼吸的各个器官,即构成呼吸系统。赛鸽的呼吸系统具有以下组成部分:即口腔后部延伸为喉,再向下延伸为气管,气管和喉以声门为界,声门在舌根之后。气管是圆形管道,壁内有许多软骨环使管壁加固。气管沿颈部腹侧延伸进入体腔后在心脏上方分成左右两支气管分别进入左右肺。支气管又分出分支开口于体腔内的气囊。鸽的肺呈海绵状,紧贴于肋骨上端内面,脊椎的两侧。鸽的气囊由极薄的壁构成,内中充气。赛鸽共有9个气囊,两个后胸气囊,两个前胸气囊,一个锁骨间气囊,两个肩下附属气囊和两个颈气囊。研究表明,优秀赛鸽的肺功能和气囊的功能与一般食用鸽相比较,具有很大的差异。这是赛鸽与一般食用鸽生理区别的重要特点。
运动科学研究证明,赛鸽在竞翔返巢运动中必须最大程度地激发体内储存的脂肪分解,供给机体运动时所需要的能量,而能量的消耗又必须确保氧气的供应,加速体内脂肪氧化供能的速度。也只有在氧气来源能够确保长时间运动需要的条件下,赛鸽才能激发出最大机能潜力的表现。此外,赛鸽在高速飞行运动中的有氧代谢供能过程,必然产生二氧化碳的代谢产物,有氧代谢能产生的二氧化碳又必须在气囊和肺经过气体交换,然后随呼吸道排出体外。如果赛鸽的肺和气囊的功能低下,容易导致大量的二氧化碳堆积在体内,直接影响赛鸽大脑和神经系统的兴奋性。由此说明,呼吸系统的肺组织和气囊的供氧能力和排出二氧化碳的能力,是机体有氧代谢能力的重要标志。
赛鸽的生长发育对呼吸系统的影响,主要从呼吸器官的逐渐分化和功能的成熟表现出来。有研究表明,幼鸽出壳后,脊髓已基本发育成熟,这就确保了呼吸等器官的正常活动。但是幼鸽期的肺和气囊仍然需要生长和发育的过程,才能保证呼吸系统各器官的生长和功能的完善。如果赛鸽的生长和发育不良,导致肺和气囊的容量较小,直接影响赛鸽有氧代谢供能时对氧气的需求量减少。赛鸽呼吸器官的生长发育水平对有氧代谢供
[1] [2] [3] 下一页